Participating Faculty

Hanjo Hellmann

Hanjo Hellmann

Department:School of Biological Sciences, WSU
Credentials:1997 - PhD., Eberhard-Karls University Tubingen - Plant Physiology
Office:Heald 511
Phone:509-335-2762
 Fax: 509-335-3184
Mailing Address:School of Biological Sciences
Washington State University
PO Box 644236
Pullman, WA 99164-4236
E-mail:hellmann@wsu.edu


Research Interests

Plant Reproduction

Research Summary

In plants and most eukaryotes, the ubiquitin proteasome pathway has been proven to be crucial for many developmental and regulatory processes. The pathway is a response mediator of various different signals which are perceived by cellular receptors and transduced within the cell. E3 ubiquitin ligases are the key players in this pathway and facilitate transfer of the ubiquitin moiety to substrate proteins, which are usually transcription factors, thereby controlling stability and activity of these proteins and their downstream target genes. Cullin proteins are a common core subunit of many E3 ligase complexes. The group's main interest is in E3 ligases that contain cullins which have been demonstrated to participate in such important processes as embryo and organ development, phytohormone signal transduction, stress tolerance and light response. Ongoing goals in the group are 1) to unravel cellular and environmental conditions like phytohormones, heat stress, or light that lead to assembly of the different cullin based complexes within the cell, 2) to characterize organ and cell specific responses, 3) to identify substrate proteins that are degraded or modified by these E3 ligases, 4) to characterize signal transduction pathways activating the different cullin-based E3 ligases and 5) to functionally describe gain- and loss-of-function mutants affected in E3 ligase subunits or substrate proteins.

Vitamin B6, or pyridoxine, is an important compound that mediates more than 100 biochemical reactions. Plants, fungi, and some bacteria can synthesize this vitamin, however in humans and other mammals it must be taken up from nutrients. Several important functions of this vitamin include alleviating oxidative stress in fungus and UV-light and salt stress in higher plants. Professor Hellmann's group is interested in the final steps of vitamin B6 biosynthesis, which are catalyzed by two small protein families that assemble to higher-order protein complexes. Specifically, what mechanisms control activity of the protein complexes and how is this activity connected with stress tolerance in higher plants.

Research Publications

Leuendorf, J. E., et al. (2014). "Arabidopsis thaliana PDX1.2 is critical for embryo development and heat shock tolerance." Planta 240(1): 137-146.

Smeekens, S. and H. A. Hellmann (2014). "Sugar sensing and signaling in plants." Front Plant Sci 5: 113.

Chen, L. and H. Hellmann (2013). "Plant E3 ligases: flexible enzymes in a sessile world." Mol Plant 6(5): 1388-1404.

Chen, L., et al. (2013). "Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants." Plant Cell25(6): 2253-2264.

Mooney, S., et al. (2013). "Genotype-specific changes in vitamin B6 content and the PDX family in potato." Biomed Res Int2013: 389723.

Fitzpatrick, T. B., et al. (2012). "Vitamin deficiencies in humans: can plant science help?" Plant Cell 24(2): 395-414.

Funck, D., et al. (2012). "The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control." Front Plant Sci 3: 80.

Leasure, C. D., et al. (2011). "root uv-b sensitive mutants are suppressed by specific mutations in ASPARTATE AMINOTRANSFERASE2 and by exogenous vitamin B6." Mol Plant4(4): 759-770.

Biedermann, S. and H. Hellmann (2011). "WD40 and CUL4-based E3 ligases: lubricating all aspects of life." Trends in plant science 16(1): 38-46.

Leuendorf, J. E., S. Osorio, et al. (2010). "Complex assembly and metabolic profiling of Arabidopsis thaliana plants overexpressing vitamin B biosynthesis proteins." Molecular plant 3(5): 890-903.

Bernhardt, A., S. Mooney, et al. (2010). "Arabidopsis DDB1a and DDB1b are critical for embryo development." Planta 232(3): 555-566.

Biedermann, S. and H. Hellmann (2010). "The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana." Plant J 62(3): 404-415.

Hellmann, H. and S. Mooney (2010). "Vitamin B6: a molecule for human health?" Molecules 15(1): 442-459.

Mooney, S. and H. Hellmann (2010). "Vitamin B6: Killing two birds with one stone?" Phytochemistry 71(5-6): 495-501.

Weber, H. and H. Hellmann (2009). "Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family." FEBS J276(22): 6624-6635.

Lytovchenko, A., R. Beleggia, N. Schauer, T. Isaacson, J.E. Leuendorf, H. Hellmann, J.K. Rose, and A.R. Fernie, "Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues." Plant Methods, 2009. 5: p. 4.

Mooney, S., J.E. Leuendorf, C. Hendrickson, and H. Hellmann, "Vitamin B6: a long known compound of surprising complexity." Molecules, 2009. 14(1): p. 329-51.

Leuendorf, J.E., A. Genau, A. Szewczyk, S. Mooney, C. Drewke, E. Leistner, and H. Hellmann, "The Pdx1 family is structurally and functionally conserved between Arabidopsis thaliana and Ginkgo biloba." Febs J, 2008. 275(5): p. 960-9.

Weber, H., Hano, P., Hellmann, H. (2007) "The Charming Complexity of Cul3." Internat. J. Dev. Plant. 1, 178-184

Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M.J., Benvenuto, G., Bowler, C., Genschik, P., Hellmann, H. (2006) "CUL4 associates with DDB1a and DET1 and its down regulation affects diverse aspects of development in Arabidopsis thaliana." Plant J. 47, 591-603

Wagner, S., Bernhardt, A., Leuendorf, J.E., Drewke, C., Lytovchenko, A., Mujahed, N., Gurgui, C., Frommer, W.B., Leistner, E., Fernie, A.R., Hellmann, H. (2006) "Analysis of the Arabidopsis rsr4-1/pdx1-3 Mutant Reveals the Critical Function of the PDX1 Protein Family in Metabolism, Development, and Vitamin B6 Biosynthesis." Plant Cell. 18, 1722-1735.

Weber, H., Bernhardt, A., Dieterle, M., Hano, P., Mutlu, A., Estelle, M., Genschik, P., Hellmann, H. (2005) "Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family." Plant Physiol. 137, 83-93.

Ren, C., Pan, J., Peng, W., Genschik, P., Hobbie, L., Hellmann, H., Estelle, M., Gao, B., Peng, J., Sun, C., Xie, D. (2005) "Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response." Plant J. 42, 514–524.

Washington State University