Participating Faculty

John Oatley

Jon Oatley

Department:Center for Reproductive Biology, Director & School of Molecular Biosciences
Office:Biotechnology/Life Sciences 302EA
Mailing Address:Center for Reproductive Biology
PO Box 647521
Pullman, WA 99164-7521

Research Interests

Male Germline Stem Cell Function

Research Summary

My laboratory studies the regulation of germline stem cell fate decisions in the mammalian testis. Spermatogenesis is a classic model of tissue-specific stem cell biology relying on the activity of spermatogonial stem cells and support from their cognate niche that is provided by contributions from testis somatic cell populations. Also, spermatogenesis is essential for the continuity of a species, contributes to genetic diversity, and determines sex ratios in most mammalian populations. Reduction in or loss of spermatogonial stem cell function disrupts spermatogenesis leading to reproductive failure in males. In addition, because spermatogonial stem cells are the only cells in the body that self-renew and contribute genes to the next generation, they provide an avenue to alter genes within a male’s germline. Aside from medical implications in humans, preservation of genetic lines of endangered species and expanded use of gametes from valuable food or companion animals represents a potential application of spermatogonial stem cell populations utilizing their capacity for regeneration of male germlines upon transplantation. Research in my laboratory involves deciphering; 1) molecular mechanisms within spermatogonial stem cells that control self-renewal and differentiation, 2) pathways controlling postnatal development of the spermatogonial stem cell pool to establish the adult stem cell population, and 3) determinants of the stem cell niche microenvironment within mammalian testes. The current focus is on investigating the role of basic helix-loop-helix (bHLH) proteins in controlling spermatogonial stem cell fate decisions, the influence of non-coding small RNAs on establishment of the spermatogonial stem cell pool, and identifying growth factors produced by testis somatic support cell populations that contribute to the niche microenvironment.

Research Publications

Selected Publications 2006-2014
Chan, F., et al. (2014). "Functional and molecular features of the Id4+ germline stem cell population in mouse testes." Genes Dev 28(12): 1351-1362.

Yang, Q. E. and J. M. Oatley (2014). "Spermatogonial stem cell functions in physiological and pathological conditions." Curr Top Dev Biol 107: 235-267.

Griswold, M. D. and J. M. Oatley (2013). "Concise review: Defining characteristics of mammalian spermatogenic stem cells." Stem Cells 31(1): 8-11.

Mistry, B. V., et al. (2013). "Differential expression of PRAMEL1, a cancer/testis antigen, during spermatogenesis in the mouse." PLoS One 8(4): e60611.

Yang, Q. E., et al. (2013). "Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline." Biol Reprod 89(5): 113.

Yang Q., Kaucher A.V., Kim D-W., Oatley M.J., Oatley J.M. 2013. CXCL12/CXCR4 signaling is required for maintenance of spermatogonial stem cells. J Cell Sci. In Press.

Yang Q., Racicot K.E., Kaucher A.V. Oatley M.J., Oatley J.M. 2013. MicroRNAs 221/222 regulate the undifferentiated state in mammalian male germ cells. Development. 140: 280-290.

Kaucher A.V., Oatley M.J., Oatley J.M. 2012. Neurog3 is a critical downstream effector of Stat3 regulated differentiation of mammalian stem and progenitor spermatogonia. Biol. Reprod. 86: 1-11.

Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. 2011. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol. Reprod. 85: 347-356.

Oatley MJ, Racicot KE, Oatley JM. 2011. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol. Reprod. 84: 639-645.

Oatley JM, Kaucher AV, Avarbock MR, Brinster RL. 2010. Regulation of spermatogonial stem cell differentiation by STAT3 signaling. Biol. Reprod. 83: 427-433.

Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR, Brinster RL. 2010. The POU domain transcription factor POU3F1 is an important regulator of GDNF induced survival and self-renewal of mouse spermatogonial stem cells. Biol. Reprod. 82: 1103-1111.

Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL. 2009. Colony stimulating factor 1 is an extrinsic regulator of mouse spermatogonial stem cell self-renewal. Development 136: 1191-1199.

Schmidt JA, Oatley JM, Brinster RL. 2009. Female mice delay reproductive aging in males. Biol. Reprod.; 80: 1009-1014.

Oatley JM, Brinster RL. 2008. Regulation of spermatogonial stem cell self-renewal in mammals. Ann. Rev. Cell Dev. Biol.; 24: 263-286.

Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for mouse spermatogonial stem cell self-renewal is dependent on Src family kinase signaling. J. Biol. Chem., 2007; 282: 25842-25851.

Oatley, J.M., Avarbock, M.R., Telaranta, A.I., Fearon, D.T., Brinster, R.L. 2006. Identifying genes important for spermatogonial stem cell self-renewal and survival.  Proc. Natl. Acad. Sci. USA 103:9524-9529.

Washington State University